

In it for life

Continuous Manufacturing *continuous or batch?*

Inês Salsinha

14 October 2023

Hovione offers Integrated Development and Manufacturing Capabilities as one of its key value propositions

Drug Subs	tance	Particle Engineering	Drug Product
Off Patent	API	Control of API physical properties	Formulations Services
Custom Sy	nthesis		

To passionately turn any challenge into a solution, by collaborating with our partners to develop great medicines.

Our Drug Product facility is located at Hovione Loures (Portugal) and back integrates to Drug Substance and Particle Engineering

Our Drug Product facility is located at Hovione Loures (Portugal) and back integrates to Drug Substance and Particle Engineering

- New batch and continuous manufacturing areas (expansion of Drug Product center)
- Batch tableting expansion Launched in 2021
- Continuous tableting Launch in 2023/2024
 - Direct compression
 - Twin-screw Wet granulation
- USA unit: FDA approval in 2022

What is Continuous Manufacturing?

- CM vs Batch Mode
- Batch definition and Control Strategy

GEA

- What changes and what does not

CM vs Batch Mode

Definitions

Batch definition

ICH Consensus Guideline

TABLE OF CONTENTS

PART I: CONTINUOUS MANUFACTURING OF DRUG SUBSTANCES AND DRUG PRODUCTS		
1. INTRODUCTION 1		
1.1. Objective		
1.2. Scope		
2. CM CONCEPTS		
2.1. Different Modes of CM 1		
2.2. Batch definition		
3. SCIENTIFIC APPROACHES		
3.1. Control Strategy		
3.2. Changes in Production Output		
3.3. Continuous Process Verification		

QUANTITY OF INPUT MATERIALS

RUN TIME AT A DEFINED FLOW RATE

QUANTITY OF OUTPUT MATERIAL

CAN be defined as a range → Batch size always set prior starting manufacturing activities.

Control Strategy Main aspects as per ICH Q13

Elements of the control strategy monitor the state of control and, when necessary, take appropriate actions to maintain control of the process.

Material Characterization

Input materials may require evaluation and control of attributes beyond those typically considered for a material specification used in batch manufacturing.

İS

This

events.

Control Strategy Main aspects as per ICH Q13

When developing a CM process and its control strategy, it is important to consider the **characteristics of the integrated systems in addition to the individual equipment** that can affect process performance.

Equipment Design and System Integration

Process Monitoring and Control

CM. (...) The use of PAT enables disturbances to be detected in real time. (...)

An **appropriate sampling strategy** is an important aspect of process monitoring and control. (...) assessment of quality of a batch when **real-time release testing** (RTRT) (...).

Control Strategy Main aspects as per ICH Q13

Understanding the RTD and process dynamics of individual unit operations and integrated systems over planned operating conditions **enables tracking of the distribution of materials over time**. This allows input materials to be traced throughout production.

Material Traceability and Diversion

Process Models

Process models can be used for **development** of a CM process or as part of a **control strategy** for commercial production, including the **diversion** strategy. Process models may also be used to **predict quality attributes in real time**, enabling timely process adjustments to maintain a state of control.

What CHANGES and what does not

What changes and what **DOES NOT**

- CM process are bound to the same requirements regarding cGMP compliance and the need to demonstrate capacity of reproducible commercial manufacture
- Control strategy based on good process understanding, relating raw material properties and process parameters with CQAs
- Controls in place for a CM process should be the result of performing structured Risk Assessment and defining risk control strategies – ICH Q9
- **Specifications** are set based on toxicology and clinical data, and from Pharmacopeial standards, regardless of the process being continuous, batch, or with elements of both

Challenges and Benefits

In it for life

Challenges of implementing CM

Knowledge Management

- Dedicated multidisciplinary teams
- Involvement in forums, partnerships to leverage the knowledge
- Promote participation in training sessions

Complexity and Standardization

- Suitable for different processes: Direct Compression, Dry Granulation, Wet Granulation – fully continuous or semi
- Lack of standard equipment design and software – multiple suppliers
- Several PAT tool
- Definition of Control Strategy

Costs

- Capital investment to upgrade or purchase equipment
- Higher investment during initial implementation phase
- Significant cleaning and setup time during changeover

Benefits throughout project lifecycle

Regulatory Landscape

- FDA and EMA position
- ICH Guideline

Hovione (ii)

Note: Over 10 products approved across the world;

Summary

Any Questions?

Inês Salsinha, Senior QA Specialist isalsinha@Hovione.com

www.hovione.com

In it for life

Thank you for your attention

In it for life